

Piezo LEGS[®] Controller PMD401

Technical Manual

Imprint

Revision 01 2017.05.15 Document number 150025-01

© Copyright by PiezoMotor Uppsala AB Stålgatan 14, SE-754 50 Uppsala, Sweden

All rights reserved, including those to the translation. No part of this description may be duplicated, reproduced, stored in an information system or processed or transferred in any other form without prior express written permission of PiezoMotor Uppsala AB.

Overview

This document is a guide to the technical aspects of installing and using *Piezo LEGS[®] Controller PMD401*. Detailed information about the different Piezo LEGS motors can be found on our website: www.piezomotor.com

Content

1 -	General Information	1
2 -	Quick Start	2
2.1	Connecting and Running Motor by Serial Command	2
2.2	Setting up Multiple Axes (Stacked Boards)	3
3 -	Installation	4
3.1	Mechanical	4
3.2	Electrical	4
3.3	Host Communication	4
3.4	Connections	5
3.5	Connections in Servo Mode	6
4 -	Operation	7
4.1	Introduction	7
4.2	Command Syntax and Controller Functionality	7
4.2.1	Commands	8
4.2.2	Settings and Miscellaneous (Y-commands)	9
4.2.3	Controller Status (U-command)	11
4.3	Target Mode (Closed Loop)	13
4.4	Script Command (Y25)	13
4.5	Index Mode Command (N)	14
4.6	Jog Commands (J and I)	14
4.7	Digital I/O Command (D)	15
4.8	Predefining a Command (B)	16
5 -	Servo Mode	17
5.1	Slave to an External Motion Controller	17
5.2	SPI Interface	17
5.3	Waveform Selection	
5.4	External Motion Controller PID Settings	
6 -	Safety Instructions	19
7 -	Maintenance	20
7.1	General Maintenance Instructions	20
7.2	Trouble Shooting	20
7.3	Firmware Updates	20

1 - General Information

The PMD401 is a 1-axis controller/driver for use with Piezo LEGS motors from PiezoMotor. The two motor connectors provide identical output signals. Several boards may be stacked together to form multi-axis systems, and piggyback on customer's mainboard for close integration in various OEM applications. For linear motors it provides resolution down to sub-nanometer range.

PMD401 is the ideal choice for system designs where one or several Piezo LEGS motors are used. The board controls the Piezo LEGS motor by feeding waveform signals to each of the piezoelectric actuator legs. The waveforms are designed specifically to make the drive legs perform a precise walking motion. The motion of the drive legs is transferred via friction contact to a linear rod or a rotary disc.

Communication with the board is via 2-wire RS485. It can operate in closed loop using quadrature or serial encoders, or act as a Piezo LEGS amplifier for use with standard motion controllers (Servo Mode via SPI interface).

Running 8192 microsteps produces 1 full waveform cycle (wfm-step), which gives around 5 μ m movement with a Piezo LEGS linear motor. Microstep resolution is better than 1 nanometer. The waveform update rate is 65 kHz and maximum cycle frequency (wfm-step rate) is 1500 Hz. Maximum cycle frequency will be set lower for motors with capacitance >0.6 μ F.

The motor can be parked (powered down) to minimize position disruption at power off. Still, the position may change somewhat during the parking procedure. The Piezo LEGS motors are capacitive and do not consume any power standing still, so there is normally no reason to park while holding a position. Do however park when connecting and disconnecting motors.

PMD401 is not intended for critical applications such as life support. The user is responsible to prevent any unacceptable damage that may be caused by system malfunction.

PMD401 has been tested to comply with EN and FCC standards for radio emission.

1

2 - Quick Start

2.1 Connecting and Running Motor by Serial Command

- 1. If purchased together with a connector board, mount the PMD401 with the stacking connector and attach RS485 lines to the terminal block of the connector board. If you do not have the special connector board, read chapter 3.4, page 5, for pin-outs and selection of mating connectors.
- 2. If you have purchased the USB-to-RS485 serial converter cable, it should install when connecting to your computer. Otherwise, find the communication drivers on the website of the manufacturer (http://www.ftdichip.com). A virtual COM port is mounted once connected and installed properly.
- 3. Connect your Piezo LEGS motor to the 5-pole connector. If you are using a Piezo LEGS Linear Twin motor, it needs to be connected with two cables in parallel (use both 5-pole connectors).
- 4. If you want to be able to run the motor in closed loop, you will need to connect an encoder through the 6-pole sensor connector. The PMD401 supports quadrature encoders as well as serial SSI or BiSS encoders. Quadrature encoder is default, whereas other encoders need to be set by command at each power on.
- 5. Connect a 48V DC power supply (±5% and minimum 5W).
- 6. Download and install a data terminal software of preference. A simple freeware Windows program is *Terminal* (https://sites.google.com/site/terminalbpp). Connect with the PMD401 at 115200n81 and send ASCII commands.
- 7. The motor must be unparked (energized) in order to run. Selecting waveform with **M** command will automatically unpark the motor. Open loop run command **J** can be used to test motor function. Be careful not to let the drive rod (the shaft) escape the motor. See below examples of a few commands to start out testing (more commands and command syntax in chapter 4).

Send:	Receive:	Comment:
XM2 <cr></cr>	XM2 <cr></cr>	Command given to unpark motor with waveform Delta (M2).
XE <cr></cr>	XE:0 <cr></cr>	If you have an encoder connected, you may read the position with E . Encoder reports position 0 counts.
XJ200,0,100 <cr></cr>	XJ200,0,100 <cr></cr>	Open loop run command of 200 wfm-steps <u>forward</u> . Speed 100 wfm-steps/second.
XJ-200,0,500 <cr></cr>	XJ-200,0,500 <cr></cr>	Open loop run command of 200 wfm-steps <u>reverse</u> . Speed 500 wfm-steps/second.
XE <cr></cr>	XE:63	Encoder reports position 63 counts. Due to variation of step-length, driving the same number of steps in two directions will not take you back to the original position.

 If you want to run closed loop, make sure to first check the Y-settings (chapter 4.2.2, page 9). Most importantly, make the correct settings of encoder type (Y13), target limits (Y3 and Y4), encoder counting direction (Y6), and the SPC variable (Y11). Note that both Y11 and Y6 can be auto-configured using Y25,1 (if encoder type is correctly set). 9. Closed loop run commands are **T**, **R** and **C**, as described in chapter 4.2.1, page 8. For example:

Send:	Receive:	Comment:
XE <cr></cr>	XE:63 <cr></cr>	Encoder reports position 63 counts.
XT20 <cr></cr>	XT20 <cr></cr>	Enter target mode and move to position 20.
XY23 <cr></cr>	XY23:83,1 <cr></cr>	Target timer indicates target was reached (1) in 83 milliseconds (83).
XE <cr></cr>	XE:21 <cr></cr>	Encoder reports position 21 counts, and apparently the motor has moved to target and is now actively controlling around that position. Stop range setting (Y5) may be altered to improve the positioning, but should be set equal to the encoder jitter.
XS <cr></cr>	XS <cr></cr>	Stop command (S) will stop motor and exit target mode.
XM4 <cr></cr>	XM4 <cr></cr>	Park motor (power down).

10. When closed loop has been tuned, for example encoder limits and acceleration, don't forget to save to flash using **Y32** command.

2.2 Setting up Multiple Axes (Stacked Boards)

 When you have one axis up and running and you want to introduce multiple other axes on the same RS485 line – start by only having one board connected and change the axis address of that first board. Every PMD401 delivered from factory will have default address 0. Change the address to 1 using the Y40 command. See below the sequence of commands to send and the expected responses from the PMD401:

Send:	Receive:	Comment:
X0Y40 <cr></cr>	X0Y40:0 <cr></cr>	To read the current address, which according to response is indeed 0 .
X0Y40,1 <cr></cr>	X0Y40,1 <cr></cr>	To set address to 1 . The next communication will have to be with the newly assigned address.
X1 <cr></cr>	X1 <cr></cr>	As seen the board is now responding on its new address 1 . Note that address is still not stored in flash memory.
X1Y32 <cr></cr>	X1Y32:0, Flash OK <cr></cr>	The save command Y32 is used to store the axis address (and other settings) into flash memory. The new address will stick after power cycle.

- 2. Now when the first board has been assigned a new address, you can add a second board to the stack. Remember to remove power before mounting the second board.
- 3. The newly added second board will have its default address **0**. Change the board address to **2** using the same procedure as before:

Send:	Receive:	Comment:
X0Y40,2 <cr></cr>	X0Y40,2 <cr></cr>	To set address to 2 . Next command will need to address axis 2 .
X2Y32 <cr></cr>	X2Y32:0, Flash OK <cr></cr>	Store address into flash memory.

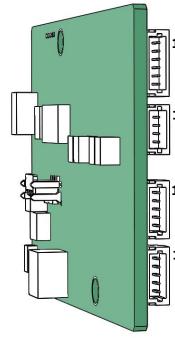
4. Now there are two boards connected with addresses 1 and 2. More boards can be added with the same procedure. Always setup boards with consecutive numbering 1, 2, 3,...,n. Address range goes from 0...126, but it may be beneficial to number from axis 1 if more than one board is connected (especially when using chain command, see chapter 4.2, page 7).

3 - Installation

3.1 Mechanical

Use M3 screws (or screws of similar size), and mount board with appropriate spacer (included). Recommended spacer is 5 mm high, outer diameter Ø4 mm, and inner diameter Ø3.2 mm. See image below for example of two stacked boards mounted on a customer specific main board. Length of screws will depend on the number of boards stacked. Download CAD model from our website to see placement of mounting holes and stacking connector. The size of the board is 59 x 39 mm.

3.2 Electrical

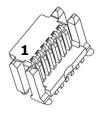

The board is powered with 48V DC power supply (\pm 5%). Current consumption at 48V is roughly 6 mA when motor is stopped and maximum 100 mA when motor is running at maximum speed. For pinouts and connectors, see chapter 3.4 on page 5.

3.3 Host Communication

The PMD401 connects to host via 2-wire RS485. If connecting to a PC, one may use a USB-to-RS485 serial converter cable (sold separately) to open up a virtual COM port. Use data terminal software of choice and send commands in ASCII format.

Serial Communication								
Baud Rate	Start Bit	Data Bits	Parity	Stop Bits	Handshaking			
115200 bits/s	1	8	None	1	None			

Connections 3.4



	Pin	Function	Alt. Function	I/O	Notes	
1	Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6	I+ GND 5V Out B+ A+ (screen)	SSI Data / in3 - out0 SSI CK in0	In GND Out In/Out In/Out In	Index or SSI data in; 10k pull-up Signal ground Max 0.2A Input B or digital out; ~20k pull-up Input A or SSI clock; 10k pull-up 22k pull-up and 10nF to GND	Sensor
1	Pin 1 Pin 2 Pin 3 Pin 4	GND 5V Out Limit Reverse Limit Forward	- - in1 / out1 in2 / out2	GND Out In/Out In/Out	Signal ground Max 0.2A External limit reverse; ~20k pull-up External limit forward; ~20k pull-up	Limit Switch
L	Pin 1 Pin 2 Pin 3 Pin 4 Pin 5	GND Motor Phase 4 Motor Phase 3 Motor Phase 2 Motor Phase 1		GND Out Out Out Out	Signal ground - - - - -	Motor
1	Pin 1 Pin 2 Pin 3 Pin 4 Pin 5	GND Motor Phase 4 Motor Phase 3 Motor Phase 2 Motor Phase 1	- - - -	GND Out Out Out Out	Signal ground - - - -	Motor

- 3.3 to 5V signal levels.
- Signals are single ended without EMC protection not intended for long cables. Suitable signal protection must be implemented externally, for example series resistors and TVS diodes.
- Connectors are from manufacturer JST, part numbers SM06B-SRSS-TB, SM04B-SRSS-TB, and SM05B-SRSS-TB. Mates with connectors from JST series SH (crimp style) or SR (IDC style).
- The two motor connectors are connected in parallel. .

		Pin	Function	I/O	Notes	
	1	Pin 1 Pin 2	GND +48V	GND In	Signal ground 48 VDC ±5%, 5W	Power
	1	Pin 1 Pin 2 Pin 3	GND485 Data– Data+	GND485 In/Out In/Out	100Ω to GND Idle low; 23k to 2.5V Idle high; 47k to 5V	RS485
_		•	GND485 is con		o signal ground (GND) via a $100\Omega/0.5W$ resistor.	

- There is a manual switch to control termination (AC-termination 120Ω , 1nF). The RS485 transceiver is robust regarding EMC and may be used with long
- cables. For implementing EMC surge protection, refer to Texas Instruments datasheet SN65HVD82.
- Connectors are from manufacturer JST, part numbers SM02B-SRSS-TB and SM03B-SRSS-TB. Mates with connectors from JST series SH (crimp style) or SR (IDC style).

U

Pin 1 Data+ In/Out Idle high; 47k to 5V	
Pin 2 Data– In/Out Idle low; 23k to 2.5V	ower S485
Pin 3 +48V In 48 VDC ±5%, 5W	84 × 84
Pin 4 +48V In -	S 2 2
Pin 5 GND GND Signal GND	<u>م</u> بر
Pin 6 GND -	

This is the board stacking connectors (one connector on each side of board).

Connectors are from manufacturer ERNI, series *MicroStac*, part number

114711. Connector mates with the same part.

3.5 Connections in Servo Mode

-		Pin	Function	I/O	Notes	
		Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6	SPI_MOSI GND SV Out SPI_SS SPI_SCLK AEN	In GND Out In In In	16-bit signed speed data; 10k pull-up Signal ground Max 0.2A Slave select; Set low during transmit; ~20k pull-up Serial clock, Max 500 kbps; 10k pull-up 1=Amplifier enable; 0=Park; 22k pull-up and 10nF to GND	Servo
		Pin 1 Pin 2 Pin 3 Pin 4	GND 5V Out Ready Fault	GND Out Out Out	Signal ground Max 0.2A 1=Overheat or parked; 0=Ready to run; ~20k pull-up 1=Error (other than overheat); ~20k pull-up	Status
	1	Pin 1 Pin 2 Pin 3 Pin 4 Pin 5	GND Motor Phase 4 Motor Phase 3 Motor Phase 2 Motor Phase 1	GND Out Out Out Out	Signal ground - - - - -	Motor
	1 1	Pin 1 Pin 2 Pin 3 Pin 4 Pin 5	GND Motor Phase 4 Motor Phase 3 Motor Phase 2 Motor Phase 1	GND Out Out Out Out	Signal ground - - - -	Motor
		•	3.3 to 5V signa	al levels.		

 Signals are single ended without EMC protection – not intended for long cables. Suitable signal protection must be implemented externally, for example series resistors and TVS diodes.

- Connectors are from manufacturer JST, part numbers SM06B-SRSS-TB, SM04B-SRSS-TB, and SM05B-SRSS-TB. Mates with connectors from JST series SH (crimp style) or SR (IDC style).
- The two motor connectors are connected in parallel.

4 - Operation

4.1 Introduction

The PMD401 is a versatile controller, designed to work in closed loop with encoder feedback. In this chapter, the command structure and commands are described so that a programmer can build software to control one or several controllers via the serial communication interface (RS485).

4.2 Command Syntax and Controller Functionality

- The serial communication interface is 2-wire RS485 (115200n81) with addressed commands. The host must allow responses to complete before sending next command.
- The protocol is plain text (ASCII), starting with **X** and axis number **0**...**126**, followed by the command and terminated with one of the command delimiters listed below.

Command Delimiters									
Delimiter	Hex ASCII	Name	Description						
<cr></cr>	0D	Carriage Return	Terminates a command, response will follow from controller						
<lf></lf>	0A	Line Feed	Terminates a command, response will follow from controller						
;	3B	Semicolon	Terminates a command, suppress response from controller, useful for sending several commands together without reply						

- The axis number can be excluded for axis **0**, e.g. **X0E**<**CR**> or **XE**<**CR**> are both valid for checking encoder position on axis **0**.
- Set-commands will be echoed back by default.
- Axis **127** is broadcast address with no responses except for "the empty command" **X127<CR>**, in which case each axis responds with its axis number at 2 ms delay per axis, useful to detect all present units. Host should wait 300 ms before sending a new command.
- Command timeout is 300 ms. Host must disable the transmitter within 20 µs after transmission (default) and allow responses to complete before sending the next command.
- Data is in decimal format except when interpreted on a bit level in some status reports.
- Tilde (~) after the axis number will instead address the next higher axis number. For instance,
 X0~U<CR> will ask status from axis 1. The response will trigger yet the next axis to give a chain response. If the axes are consecutive and a chain command is given to address 0~, all axes will respond except axis 0. For example, with three controllers connected (1, 2 and 3) a command X0~U<CR> will give the response X1~U:aaaa<CR>X2~U:bbbb<CR>X3~U:cccc<CR> If a syntax error is detected for a chain command, then the ~ is omitted to prevent errors from consecutive axes.
- A syntax error is indicated by inserting _??_ in the response, e.g. X1_??_Q5. Any syntax error in the stop command (S) is ignored.
- If the command was correct but could not be executed, then the command is echoed with a trailing '!', e.g. trying to run when motor was parked (will instead unpark).
- A target command (T, R or C) will enter Target Mode (closed loop) and a stop command (S) will end Target Mode. An open loop run command (J or I) will end Target Mode as well. The closed loop normally runs every 1 ms, except for some slow SSI encoders where the target loop iterates every 2 ms. There is no error checking for 32-bit encoder position rollover, but there are position limits (Y3 and Y4) that can be used to prevent this situation in closed loop.

4.2.1 Commands

Commands	
Command	Description
?	Read identification string Read controller type and firmware revision. Example response: X0?:PMD401 V13
U {StatusType}	Read status Read controller status. See details in chapter 4.2.3, page 11. {StatusType}: 0,1,2,3,4
S	<i>Stop</i> Stop motor and exit target mode.
M{Waveform} M	 Waveform and parking state Set-command to select waveform will also unpark the motor. Read-command gives both waveform and parking state (M:5 if parked with <i>Rhomb</i> and M:6 if parked with <i>Delta</i>). {Waveform}: 1 Waveform <i>Rhomb</i> 2 Waveform <i>Delta</i> 4 Park (power-off)
T{TargetPos},{Speed} T{TargetPos} T	Target Closed loop move to new target position. Motor should not be parked. Response to read-command is T:100 if last active target was encoder position 100. {TargetPos}: New target position {TargetPos}: Stepping rate; will set Y8 [wfm-steps/second; Hz]
R{RelActive},{Speed} R{RelActive} R	Target relative to latest active target Closed loop move to new position relative to latest active target. Beware of i32 overflow. Read-command reports the current target position. {RelActive}: Distance relative to latest active target [speed]: Stepping rate; will set Y8
C{RelCurrent},{Speed} C{RelCurrent} C	Target relative to current encoder position Closed loop move to new position relative current position. C0 to hold current encoder position. Beware of i32 overflow. Read-command reports the current target position. [encoder counts] {RelCurrent}: Distance relative to current encoder position [encoder counts] {Speed}: Stepping rate; will set Y8 [wfm-steps/second; Hz]
E{Position} E	Encoder position Read or set encoder position. Beware that setting position in target mode will move motor. {Position}: Position to set [encoder counts]
b	Predefine command Any command with a trailing b can be predefined in memory and later executed with B . For example X1T100b<cr></cr> and X2T200b<cr></cr> to predefine targets for axis 1 and 2.
B{Parameter} B	Execute a predefined command To execute a command which has been predefined in memory. Useful for simultaneous execution of all axes using broadcast command: X127B1 <cr>. Read more in chapter 4.8. {Parameter}: 0 To clear a predefined command 1 To begin execution of a predefined command.</cr>
D{outX},{State} D	<i>Digital I/O</i> To set output pins or read their status. See chapter 4.7 on page 15 for more details.
J{wfmStep},{µStep},{Speed} J{wfmStep},{µStep} J{wfmStep} J	Run motor (Jog) Open loop stepping. Read more in chapter 4.6. {wfmStep}: Number of waveform-steps {µStep}: Number of microsteps {pseed}: Stepping rate [wfm-steps/second; Hz]
H{Speed} H	Speed for open loop Speed setting for open loop run commands J and I. {Speed}: Stepping rate [wfm-steps/second; Hz]
N{Mode} N	Index mode When enabled, use open loop jogging (I) to search for quadrature index. Read more in ch. 4.5. {Mode}: 0 Disabled 1 Position was reset at index (read only) 2 Stop at index 4 Stop and reset position at index
I{wfmStep},{µStep},{Speed} I{wfmStep},{µStep} I{wfmStep} I	Run motor (Index Jog) Same as J command, but will only run if index mode is activated and index has not been detected. Read more in chapter 4.6.

Commands	
Command	Description
L{SampleDelay} L-{SampleDelay}	Position logging Logging of 100 encoder positions. {SampleDelay}: Delay time between samples [millisecond] Example: L5 starts logging directly after command is given (with 5 ms delay between samples), whereas L-5 arms logging to start when receiving next command (for example a run command).
L0 L	Read stored log data or statusResponse is:L0:{StartTime},{SampleDelay},{StopTime},{samples}, {pos0},,{pos99}Response is:L:{StartTime},{SampleDelay},{StopTime},{samples}, {pos0}
Y {#} , {Setting} Y {#}	See chapter 4.2.2 below.
<esc></esc>	Escape cancels the command line (command delimiter still required). No response.
<empty></empty>	Empty command is just echoed back (useful as a ping), e.g. X1<cr></cr> will echo axis 1. Empty command to broadcast address, X127<cr></cr> , will trigger each axis to respond with its axis number at 2 ms delay per axis (useful to detect all present units).

4.2.2 Settings and Miscellaneous (Y-commands)

- Set using **Y**{#},{x} or alternatively **Y**{#}={x}
- Read using **Y**{#} or alternatively **Y**{#}?
- Command **Y**{#} will most often only report the parameter whereas **Y**{#}? also adds a short description.
- Undocumented **Y**{#} are reserved for future use. A trailing '!' indicates unimplemented **Y**{#}, for example **Y99**:!

Settings and Misc	ellaneous		
Command	Description	Notes	
YO	Read microstep counter Reads back the microstep within the waveform (8192 microsteps per cycle). Example response: Y0:0,4096 first digit is not used, second is 08191.		0,U16
Y1, {Initiate}	Initiate from flash{Initiate}:2Initiate from flash (Y312, Y3840)3Initiate factory default values (Y312)	Y32 saves t	o flash
Υ1	Compare current flash settingsResponses:Y1:0, Flash equalY1:1, Flash differY312, Y3840Y1:2, Axis differY40		
Y2, {xLimitEn} Y2	External limit enable {xLimitEn}: 0 Disabled 1 Enabled, active high (pull-up) 2 Enabled, active low (pull-up)	<i>Default</i> 0	U2
Y3, {LimitA} Y3	Target mode position limit A Target mode will stop when encoder count <a< td=""><td><i>Default</i> -10000</td><td>I32</td></a<>	<i>Default</i> -10000	I32
Y4, {LimitB} Y4	Target mode position limit B Target mode will stop when encoder count >B	Default 10000	I32
Y5,{StopRange} Y5	Target mode stop range Number of encoder counts from target where it is optimal to stop the motor. This dead band should be set equal to the encoder jitter.	Default 1	U16
Y6, {EncDir} Y6	Encoder counting direction{EncDir}:0for positive counting in forward direction1for negative counting in forward direction	Default 0	U1
Y7 ,{MinSpeed} Y7	<i>Target mode minimum speed</i> Stepping rate [<i>wfm-steps per second</i> ; <i>Hz</i>]	<i>Default</i> 1	U16
Y8,{TargetSpeed} Y8	Target mode speed Stepping rate [<i>wfm-steps per second</i> ; <i>Hz</i>] Measured capacitance limits actual maximum speed (see U3 command)	<i>Default</i> 1500	U16

Command	Description	Notos
Command	Description	Notes
Y9,{SpeedRampUp} Y9	Target mode speed ramp up Acceleration in target loop. Max 800 [<i>Hz/ms</i>].	<i>Default</i> 20 U16
Y10,{SpeedRampDown} Y10	<i>Target mode speed ramp down</i> Deceleration in target loop. Max 800 [<i>Hz/ms</i>].	<i>Default</i> 20 U16
Y11,{SPC} Y11	Steps Per Count in target mode {SPC} can be calculated ≈ 50 {EncoderResolution}, where encoder resolution is given in nanometers. You may use script Y25,1 to auto-configure this setting. Read more in chapter 4.3, page 13.	Default 250 U32
Y12,{Model} Y12	Target mode model {Model}: 0 to reach target as fast as possible 1 to avoid overshoot only in forward direction 2 to avoid overshoot only in reverse direction 3 to avoid overshoot in both directions	Default 0
Y13, {EncType} Y13	Encoder type {EncType}: 0 No encoder; Host may report positions (32-bit) 1 Quadrature (32-bit, max 15 MHz counting) 2 Reserved 3 Servo; SPI slave to external motion controller 4/5/6 BiSS 18/26/32 bit 830 SSI 830-bit; 330 kbps; Position is extended to 32-bit by lap counter. 3860 SSI 830-bit; 130 kpbs; Position is extended to 32-bit by lap counter; Target loop runs at half speed (every 2 ms) The quadrature input signal A is used as output to SSI encoders and also in servo mode. Only encoder type 03 is saved to flash with Y32 whereas serial encoders will revert to 0 (none) at power on.	Setting at delivery 1 U8
Y14, {QuadOffset}	Quadrature offset	
Y14	For example: Y14,1000 to set index position = 1000	132
Y19	Read analog input [not implemented]	U12
Y21	Read time [ms] Free running 32 second timer. Max value 32762 [ms]	U15
Y22	Read xLimit time [ms]Example:Y22:3650,1if stop detected at time 3650 ms	U15
Y23	Read target timer [ms]Examples:Y23:650,1Y23:20,0if target reached in 650 msif target not yet reached, running 20 ms	U15
Y25, {RunScript} Y25	Run Script 0 Stop {RunScript}: 0 Script for auto-configuration of Y6 and Y11 Read more in chapter 4.4 on page 13.	Y25:1,1 when executing Y25:1,0 when finished
Y30	Read target mode parameters Y213	csv multiple data types
Y32	Save to flash Parameters Y213, Y3840 are saved to flash. Will not store serial encoders for Y13, but instead reverts to no encoder at power on. Save takes ~60 ms.	Y32:0 Flash OK when save is done
Y38	[not used]	
Y39	[not used]	
Y40, {Address} Y40	Axis address {Address}: 0126	Setting at delivery 0 U8
Y41	Software reset	Y41:0, Reset
	Reboot takes about 2.5 seconds	When rebooted
Y42	Read unit serial number	U32
Y44, {ResponseDelay}	Command response delay	Default at power of

4.2.3 Controller Status (U-command)

U0

U0:{d1}{d2}d3}{d4}

This command will give status information for many different controller functions. There is a LED on the PMD401 board which is normally OFF, but turns ON in case of voltageError or close to overheat (fanRequest). LED also makes a short blink when executing a serial command.

Bit Val	ue	{d1}	{d2}	{d3}	{d4}
8		<u>comError</u>	<u>reset</u>	servoMode	parked
4		encError	xLimit	targetLimit	overheat
2		<u>voltageError</u>	script	targetMode	reverse
1		<u>cmdError</u>	index	targetReached	running
<u>Underline</u>	<u>ed</u>	Means the specific f	lag will stay active u	ntil reported.	
comErroi encError voltageE cmdErroi	rror	Encoder error (seria Supply voltage or n	al communication or notor fault was detec	rong baudrate, data collisior reported error from serial er ted. error was detected when re	ncoder).
reset xLimit script index		Power-on/reset has occurred. Is set if the last motor movement was stopped by external limit switch. Flag indicates that the SPC test or some other script is running. Indicates that index signal was detected since last report.			
servoMoo targetLin targetMo targetRe	nit ode	If servo mode is set Is set if the position If target mode is ac If target was reached	limit is reached. tive (closed loop).	lating in closed loop.	
parked overheat reverse running	:	Motor is powered down. Controller board output stage is overheated. Last motion was in reverse direction. Motor is running.			
Send	Exampl	e Response	Comment		
UO	U0:0808	3	{d2}: 8	Reset (8) has occurred; norr	mal at power on.

Sena	Example Response	connent	
UO	U0:0808	{d2}: 8	Reset (8) has occurred; normal at power on.
		{d4}: 8	Motor is parked (8).
U0	U0:0162	{d2}: 1	Index was detected since last report (1).
		{d3}: 6	Target mode (2) stopped by encoder limit (4).
		{d4}: 2	Last motion was in reverse direction (2).

U1

U1:{out}{in}

This command will give status of output and input pins (I/O). It also gives a fan request status when board is close to overheat and could use some cooling (on board LED will also light up). Note that bit response is hexadecimal.

Bit Va	lue	{out}	{in}
8		fanRequest	in3
4		out2	in2
2		out1	in1
1		out0	in0
Send	Example F	Response Comment	
U1	U1:dc	{out}: d	out0 high (1), out2 high (4) and fanRequest (8).
		{in}: c	in3 is high (8) and in2 is high (4).

U2

U2:{5V},{3.3V},{48V},{M23},{Temp}

This command will give status information for board voltages. Errors previously detected are indicated with an asterisk (*). Motor will stop on voltage error or overheat.

Parameter	Description	Nominal Value	Unit	Error Limit
{5V}	Internal 5V	5.00	V	±10%
{3.3V}	Internal 3.3V	3.30	V	±5%
{48V}	Internal 48V	48.0	V	±5%
{M23}	Test signal motor failure	~23	-	≤14
{Temp}	Temperature on PCB	-	°C	≥74°C

Send	Example Response	Comm	Comment		
U2	U2:5.05,3.32,47.2*,23,56C	{5V}:	5.05	Measured 5V level.	
		{3.3V}:	3.32	Measured 3.3V level.	
		{48V}:	47.2*	Measured 48V level. The star indicates that an error	
				was detected, but may no longer be present.	
		{M23}:	23	Indicating test signal is okay.	
		{Temp}:	56C	Indicating 56°C on PCB board.	

U3

U3:{cap},{freq}

This command will give status regarding measured motor capacitance and maximum allowed drive frequency.

Send	Example Response	Comment	
U3	U3:2064nF,457Hz Delta	{cap}: 2064nF {freq}: 457Hz Delta	Indicating estimated motor capacitance of roughly 2064 nF. Calculated maximum drive frequency and information about the selected waveform (Delta or Rhomb).

U4

U4:{d1}{d2}{d3}{d4},{out}{in}

This command will give status information same as U0 and U1 together.

4.3 Target Mode (Closed Loop)

A target run command (**T**, **R** or **C**) will enter Target Mode (closed loop) and a stop command (**S**) will end Target Mode. Giving an open loop run command (**J** or **I**) will also end Target Mode. The closed loop normally runs every 1 ms except for extra slow SSI encoders where the target loop iterates every 2 ms. There is no error checking for 32-bit encoder position rollover, but there are position limits (**Y3** and **Y4**) that can be used to prevent this situation in closed loop. Note that setting the encoder position while operating in Target Mode may have the effect that the motor starts to move if the position is no longer equal to target.

Target Mode requires that an encoder (position sensor) is connected. PMD401 supports quadrature encoders and serial SSI or BiSS encoders. Encoder type is selected with setting **Y13**. If an unsupported encoder is required, one may let host computer handle encoder and send position updates to PMD401 at regular intervals (for example every 10 ms) so that the controller can perform target loop.

There are a few Target Mode settings parameters (**Y3**...**Y12**) that specifically decide the closed loop behavior. Most importantly settings must be made for target limits (**Y3** and **Y4**), encoder counting direction (**Y6**), and the SPC variable (**Y11**). Note that both **Y11** and **Y6** can be auto-configured using **Y25,1** (if encoder type is correctly set).

The **Y11** setting for Steps Per Count (SPC) tells the controller how to convert a distance (encoder counts) into microsteps. The motor step length is rather approximate, so the SPC parameter does not have to be very precise for obtaining a stable target loop. The SPC has a scaled integer representation, and needs to be calculated. SPC can often be approximated to $50 \cdot [\text{encoder resolution in nanometers}]$. For instance, if the encoder resolution is 5 nm, we can enter **Y11**=250. One may also run a number of open loop steps and determine the change in encoder counts per wfm-step [*counts/wfm-step*]. For example, run 16 wfm-steps (**J16**) and note the change in encoder counts. Divide by 16 to get a value X in unit *counts/wfm-step*. Now calculate **Y11**=65536·4/X.

If you do not want to calculate SPC manually, there is a script **Y25,1** which will auto-configure **Y11** described in the next section (4.4).

Target Mode will adjust to the acceleration and deceleration parameters set by **Y9** and **Y10**. For example, the ramp down deceleration parameter **Y10** defines the behavior when approaching target. Overshooting target can be prevented if deceleration is soft (a low value for **Y10**). There is also a parameter **Y12** to slow down target approach in one or both directions.

4.4 Script Command (Y25)

The only script implemented at this time is **Y25,1** which is a script to determine the relationship between encoder resolution and motor step length, and to set parameters **Y6** and **Y11** accordingly. The script will run the motor ± 16 wfm-steps (roughly ± 0.1 mm) and check encoder positions to do calculations. A read command will show **Y25:1,1** when executing and **Y25:1,0** when finished. An error gives a negative value (for example **Y25:1,-1**) and **Y11** is set very low.

4.5 Index Mode Command (N)

The alternatives are **N2** (to stop at index), **N4** (to stop and reset position at index), or **N0** (deactivate Index Mode). **N4** enters index mode which will reset position when the index signal comes (when ABI=111).

The read command **N** reports current index mode status and last detected index position with response **N**:{mode},{position}. Mode **1** will be reported when position has been reset at index, for example **N**:**1**,**132**. A question mark after the read command (**N**?) will add a short description, e.g. **N**:**1**,**132**., **indexed** (meaning position has been reset at index). A dot '.' after the logged index position indicates that the position was logged since the last report. The index position as given by read command is logged by index signal alone, so it may be logged before position reset and can deviate somewhat from the true index position where position reset occurs (ABI=111).

The open loop command **I** can be used when searching for index. The **I** command is similar to **J** command, with the difference that it only runs when Index Mode is active, i.e. when index has not been found.

Setting quadrature offset **Y14** is a way to alter the position while keeping the index position valid. Setting the quadrature position directly (e.g. **E0**) will introduce an uncertainty to the exact index position and the Index Mode will therefore revert to zero (unindexed) and furthermore reset the offset (**Y14**=0). A position reset at index will set the position equal to **Y14**. Setting **Y14** afterwards will simply redefine the index position without the need to go back and find it.

4.6 Jog Commands (J and I)

Open loop jog command **J** can move motor in full wfm-steps, by microsteps, or by a combination of wfm-steps and microsteps, as well as set the speed. 8192 microsteps constitutes 1 wfm-step.

All input values are signed integers. A negative value for any of the parameters will give reverse movement.

J{wfmStep},{μStep},{Speed} J{wfmStep},{μStep} J{wfmStep}	Set command: Set command: Set command:	wfm-steps + microsteps at given speed wfm-steps + microsteps, previous speed wfm-steps, previous speed	
J	Read command:	Returns J:1 if motor is running Returns J:0 if motor is stopped.	
Send Examples:	Comment:		
XJ-16,4096,256 <cr></cr>	Run 16 wfm-steps and 4096 microsteps, reverse direction. 16 + 4096/8192 = 16.5 wfm-steps. Speed is 256 wfm-steps/second. Will complete in 16.5/256 seconds ≈ 64.5 ms		
XJ0,128,5 <cr></cr>	Run 128 microsteps, <u>forward</u> direction. 0 + 128/8192 = 0.015625 wfm-steps. Speed is 5 wfm-step/second. Will complete in 0.015625/5 seconds ≈ 3.1 ms		
XJ-978 <cr></cr>	Run 978 wfm-steps Speed will be depe	s, <u>reverse</u> direction. nding latest open loop speed (stored in H)	

The **I** command works the same but will only run if index mode is activated and index has not been detected. Useful to avoid running if index is detected just before the run command is given.

4.7 Digital I/O Command (D)

Depending on encoder type and use of limit switch, there are some unused digital inputs and outputs available for general purpose. As can be seen in the pinout table (chapter 3.4, page 5), **out0** is not available when quadrature encoder is selected and **in3** cannot be used together with SSI encoders or quadrature index.

Note that **out0** and **in0** use different pins , whereas **in1/out1** and **in2/out2** share the same pins as external limit switch inputs. Outputs **out1** and **out2** must be set high (open drain) to read the inputs. Setting **out1** or **out2** low when limit switch function is enabled will produce a pulse and return to high level (input). External limit switch signals should then be open drain or connected via series resistors, for example $1.2k\Omega$.

out2}{out1}{out0]	{in3}{in2}{in1}{in0}			
d command will	give status of input and o	utput pins.	. Pin h	igh indicated by ${f 1},$ and pin low indicated by ${f 0}.$
Send	Example Response	Comme	ent	
D	D:110,1100	<pre>{out2}: 1 {out1}: 1 {out0}: C {in3}: 1 {in2}: 1 {in1}: C {in0}: C</pre>	1 D 1 1 D D	Indicating out2 is high Indicating out1 is high Indicating out0 is low Indicating in3 is high Indicating in2 is high Indicating in1 is low Indicating in0 is low
		drives th	•	while {out1} is 1 , this indicates that an external signal low.

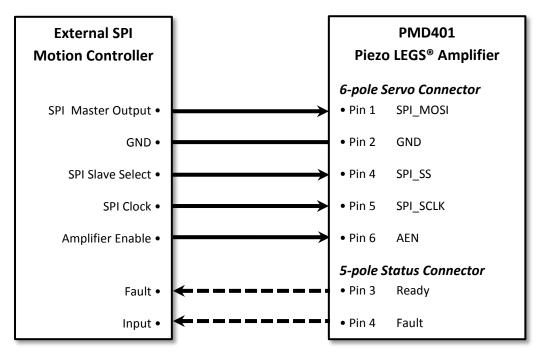
Set command D{outX},{State} will set output pins, where {outX} is 2/1/0 for out2/out1/out0, and {State} is 1 for pin high and 0 for pin low.

Example Send	Comment
D0,1	out0 is set high (1).

4.8 Predefining a Command (B)

Any command given that ends with a trailing **b** will be stored in the **B** command and can later be executed with **XB1**. For instance, **X1T100b<CR>** and **X2T200b<CR>** will store commands **T100** for axis 1 and **T200** for axis 2. Both commands can then be executed simultaneously by sending command **B1** to the broadcast address, **X127B1<CR>**. Sending **X0~B1<CR>** will also execute the predefined commands almost simultaneously (chain command for consecutively numbered axes).

b	Stores a command, for example X1T200b<cr></cr> will store command T100 for axis 1.
B0	Clears a stored command.
B1	Begins execution of stored command. The response from executed command is not returned. If however the executed command generates an alert, then the alert indicator '!' is returned, i.e. XB1 !
В	Reports the stored command string. Example response: B:T100b


5 - Servo Mode

5.1 Slave to an External Motion Controller

PMD401 can act as a Piezo LEGS amplifier for an external servo motion controller with SPI interface. Note that suitable signal protection must be implemented externally, for example series resistors and TVS diodes.

Servo mode is enabled by connecting with the PMD401 by serial RS485 interface, setting **Y13** parameter to **3**, and saving the setting to flash memory by **Y32** command. Note that the serial commands to run/stop the motor will disable servo mode until reboot or **Y13** parameter is set to **3** again.

See chapter 3.5 on page 6 for connections in Servo Mode. A low level on **AEN** input signal will power down (park) the motor. It normally takes 250 ms to power down and at least 80 ms to power up the motor (longer with larger motors). The **Ready** signal will be low when PMD401 is ready to run. A high **Ready** signal indicates amplifier overheat or motor powered down (parked). A high level on **Fault** indicates a critical error, e.g. motor or voltage failure (not overheat). Fault condition is also indicated by LED. A fault will stay for at least 250 ms.

5.2 SPI Interface

Amplifier enable signal from the motion controller connects to **AEN** input and unparks motor on high level. The **SPI_MOSI** controls the motor speed. The motor will stop when input data is =0. The PMD401 expects regular speed updates and will stop the motor if no SPI data has been received for about 10 ms. The 16-bit signed SPI data gives linear speed control (stepping rate). Note that motor step length is not constant and a position sensor (encoder) is necessary for feedback to the motion controller.

SPI_SCLK idle state is high and PMD401 samples data after positive edge (max 500 kbps). Serial command **E** can be used to report the latest received SPI data (useful for debugging).

Maximum motor stepping rate is 1500 Hz. However, a capacitance check is done at the time of unpark and may select a lower speed limit for motors with capacitance $>0.6 \mu$ F.

5.3 Waveform Selection

The default waveform at power ON is *Delta*. The other alternative is waveform *Rhomb*. Waveform must be selected with serial command.

The *Delta* waveform gives much higher positioning accuracy and is normally preferred. The *Rhomb* waveform may give longer step length for light loads, i.e. faster max speed.

5.4 External Motion Controller PID Settings

The external motion controller should normally be setup for a brush-type DC servo amplifier. However, the motor command will alter the motor stepping rate (frequency) rather than the torque, so the PID settings will differ from a normal servo. It is recommended to have D=0 and I=0 and only use P. If there is a "velocity feed forward", this may improve motion control.

A servo controller normally requires feedback from a position sensor (encoder). Using a motion controller without an encoder often results in continuous run at maximum speed unless a limit has been set on PID output. Limiting the PID output can be convenient when testing for example the encoder direction. Take away the PID limit when the system is functioning, and set the desired motion speed, acceleration, and deceleration.

6 - Safety Instructions

Note!

The PMD401 driver is a high-end product intended for use with PiezoMotor's Piezo LEGS product line. In order to get best performance and reliability it is important the driver unit is handled according to the instructions given in this manual and other delivery documents.

Caution!

The piezoceramic elements in a Piezo LEGS motor act as capacitors and can sometimes hold substantial electrical charge.

> Make sure motors are discharged through suitable discharge resistors.

Caution!

Incorrect installation using improper mounting materials or methods can cause damage to the PMD401 driver unit.

Caution!

Depending on its use the PMD401 unit can get very hot.

The PMD401 should be installed in a clean and dry environment with access to proper ventilation. On installation, ensure that air can flow around the board without obstruction.

Caution!

Electrostatic discharges can cause irreparable damage to the electronics.

> Note and follow the ESD protective measures

Caution!

Incorrect connection of motor leads may cause irreparable damage to both motor and PMD401.

> Connect in accordance with the specified pin assignment.

7 - Maintenance

7.1 General Maintenance Instructions

The PMD401 does not require any regular maintenance. Follow given safety instructions.

7.2 Trouble Shooting

If problem arise, the status command (**U**) should provide useful information. Check wirings to motor and encoder. Try running in open loop to see if you can get movement. Regarding closed loop operation, make sure the Target Mode settings are correct. If you get readings from the encoder you can see if you have the correct resolution by taking a number of open loop wfm-steps and checking how many encoder counts you have traveled. A wfm-step is typically $5\pm 3 \mu m$ for a standard Piezo LEGS linear motor.

7.3 Firmware Updates

When new features are added, the user can update the firmware over the serial interface using bootloader software. PiezoMotor will make updates available on **www.piezomotor.com**.

When firmware is updated, you should also look for the latest revision of this manual to learn about the updates, or read the change log document.

PiezoMotor Uppsala AB Stålgatan 14 SE-754 50 Uppsala, Sweden Telephone: +46 18 489 5000 Mail: info@piezomotor.se Web: www.piezomotor.com