

Content

4
5
6
6
6
7
9
11
12
14
16
18 20
20
25
25 26
28
30
33
34
36
39
40
41
42
44

About PiezoMotor

PiezoMotor is a world-leading developer and producer of groundbreaking micromotors based on piezoelectric materials. The technology enables compact motors with high precision and true direct drive. The objective is to move and hold position.

At our headquarters in Sweden, we have our own development and production facility. We have a solid patent portfolio with more than 60 patents. The PiezoMotor share is traded at Nasdaq First North in Stockholm.

PiezoMotor solutions

World-leading engineering

- Adjust our solution to fit your design
- Close contact during your implementation

Supporting software

- Easy interface
- Download free software

Partners of excellence

- System integrators
- Technology consultants
- Sales partners / Distributors

Tailor-made controllers

- Stand-alone
- Packaged
- License of design

When you buy from PiezoMotor you get more than just a motor. Our expert engineers are ready to help you get started. We offer standard motors in various sizes and strokes. We are happy to help you select suitable position sensors as well as provide guidance to, or customization of, the mechanical interface of the motor. Our experienced mechanical and electronic designers will help you throughout the process. If standard is not enough, we have a broad network of system integrators and technical consultants who can help you integrate the motor in your motion system.

With our free software that can be downloaded from our website, it is easy to get started testing the motor. We offer drive electronics and the possibility to buy the design of schematics so that you can create your own circuit board with customized connectors and form factor.

About the technology

The piezoelectric effect

The word piezo is derived from the Greek word for pressure. In 1880 Jacques and Pierre Curie discovered that pressure generates electrical charges in several crystals such as quartz and tourmaline; they called this phenomenon the piezoelectric effect. Later they noticed that electrical fields can deform

Advantages of the piezo technology

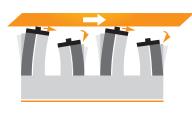
PiezoMotor technology enables:

piezoelectric materials. This effect is called the inverse piezoelectric effect.

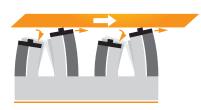
Direct effect

Inverse effect

- Piezo LEGS® can easily position on a sub-micron level, or even down to subnanometers. The resolution depends on the electronics; the limiting factor is not the motor itself. With the possibility to microstep down to sub-nanometer, you can achieve a truly smooth motion.
- A controlled linear motion without backlash is accomplished without the need of gearboxes or ball screws - the motor responds instantly. The true direct drive enables a combination of high precision and a dynamic speed range. Piezo LEGS® is self-locking and will hold load even when powered off.
- The drive unit in the Piezo LEGS® is non-magnetic. This enables motor designs suitable for high-magnetic environments or where magnetic disturbance is an issue.
- The motor has a compact design which fits perfectly in OEM applications.


How it works

The system

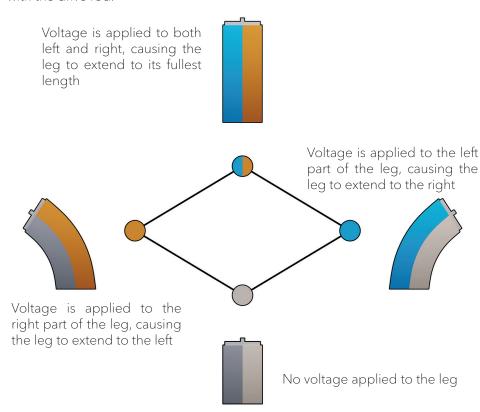

To run a piezo motor you need electronics, as in all modern motion control. The core of the motor is a multi-layer piezo ceramic, a component with high performance at low voltage. By applying controlled electrical voltage to the ceramic, a linear or rotary motion is created. To keep control of the position, an encoder is required. The resolution of the system depends on both the encoder resolution and the electronics resolution.

1 All four legs are electrically activated.

2 The first pair of legs maintains contact with the rod and moves right. The second pair retracts. Their tips bend left.

3 The second pair now extends and repositions on the rod. Their tips move right. The first pair retracts and their tips bend left.

4 The second pair of legs moves right. The first pair begins to extend and move up towards the rod.



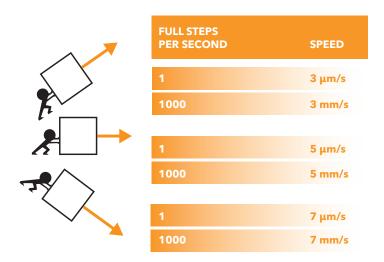
One of the greatest advantages of piezo-based systems is the combination of high precision and quick response time without increasing cost of the system.

A piezo motor-based system has a true direct drive, meaning that the object to be moved is directly connected to the piezoceramic actuator legs in the motor via the drive rod of the motor. This has the important advantage of giving no backlash, quick response time, and high resolution. This enables short cycle times in repeated move-and-settle applications reducing overall processing time.

The motor

Piezo LEGS® work with friction drive, where force is created by the internal preload of the piezoceramic actuator legs in direct friction contact with the rotor or drive rod. When the legs start walking, they are always in mechanical contact with the drive rod.

The electronics


A controlled motion is created by applying voltage signals to the ceramics. The step length depends on the load as shown in the figure below. One full step can be divided into several thousands of microsteps. The length of a microstep reaches down to sub-nanometer level.

Waveform optimized for high microstep resolution

A microstep = a fraction of the waveform (full step); e.g. 8192 microsteps per waveform.

1 microstep, less than 1 nm

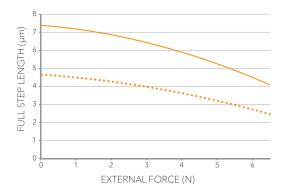
motion

Motion is load-dependent. The step length will vary with the load, impacting both speed and resolution.

Motor characteristics

In this catalogue you will find detailed information about the standard products from PiezoMotor. Piezo LEGS® are non-resonant walking motors; in several aspects quite different from DC or stepper motors. A Piezo LEGS® motor is friction based, meaning the motion is transferred through contact friction between the drive leg and the drive rod/disc. You cannot rely on each step being equal to the next. This is especially true if the motor is operated under varying loads. For each waveform cycle of the drive signal, the motor will take one full step, sometimes referred to as a waveform step (wfm-step). There is dependence between the external load on the motor and the full step length. At zero external load, the typical full step length is $\sim\!5~\mu\text{m}$, but as the load is increased, the full step length will be increased in the direction of the external force. The full step length will also depend on the internal piezo temperature and on the type of waveform.

The full step length can be used to calculate the approximate motor speed. Full step length at a given load is multiplied with the frequency of the drive signal waveform.


Example 1

Waveform type	LL06 motor, no load, 2000 full steps per second	
Rhomb	\sim 7 µm x 2 kHz = \sim 14 mm/s	
Delta	\sim 4.5 µm x 2 kHz = \sim 9 mm/s	

Example 2

Waveform type	LT20 motor, 10 N load, 2000 full steps per second	
Rhomb	\sim 6.5 μ m x 2 kHz = \sim 13 mm/s	
Delta	\sim 4 μ m x 2 kHz = \sim 8 mm/s	

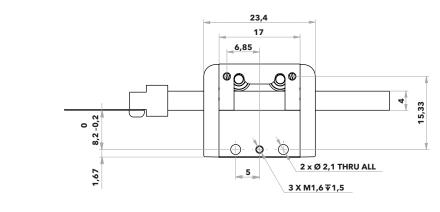
Fine positioning is achieved by dividing the full step into discrete points; so called microsteps. The resolution will be a combination of the number of points in the waveform and the external load. For example, a full step of 4 μm can be divided into 8192 microsteps that are only $\sim\!0.5$ nm. The resolution of the motor depends entirely on the controller and how well it can manage the discrete voltage levels of the waveform.

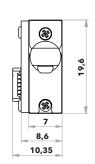
Full step versus external load for an LL06 motor. The filled line shows a typical curve for waveform Rhomb, and the dotted line shows waveform Delta. Values are typical for room temperature, and mean values for the motor type. Statistical spread is not shown.

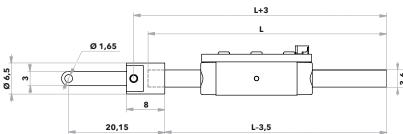
Linear motors

		Stall force (N)	Recommended working force (N)	Speed range (mm/s) ^a	Max stroke (mm)	Built-in encoder versions	Vacuum compatible versions (10 ⁻⁷ Torr)	Non- magnetic versions
	LL06 (A)	6.5	0-3	0-24	74.1	Optional	No	No
	LT20 (A/C/D)	20	0-10	0-24	74	No	Yes	Yes
Motor	LT40 (A/C/D)	40	0-20	0-12	67	No	Yes	Yes
Š	LTC40 (A)	40	0-20	0-12	13	No	No	No
	LTC300 (B)	300	0-150	0-0.3	20	No	Yes	No
	LTC450 (B)	450	0-225	0-0.2	20	No	Yes	No

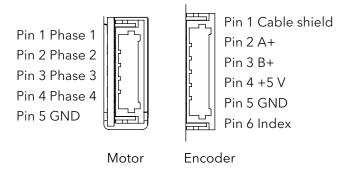
a. Rhomb, no load, 20°C


		Description
	Α	Standard, stainless steel
ype	В	Vacuum, soldered cable
5	С	Non-magnetic
	D	Non-magnetic vacuum

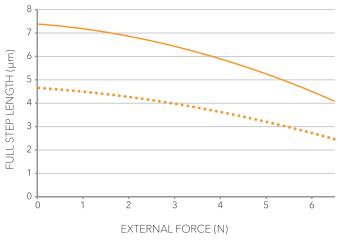



Technical specification LL06				
Type Standard (A)				
Stroke (mm) For more information, see table on opposite page.	0-74.1			
Speed range (mm/s) @ Rhomb, no load, 20°C	0-24			
Step length, full step (μm) @ Delta, no load, 20°C	4.5			
Motor resolution, microstep (nm) 14 bits, 8192 microsteps	<1			
Built-in encoder	Yes			
Encoder resolution (μm)	1.25 (encoder E1), reflective optical type with quadrature output (ABZ)			
Encoder accuracy (µm)	±3			
Encoder repeatability (µm)	1.25			
Stall force (N)	6.5			
Holding force (N)	>6.5			
Recommended operating range (N)	0-3			
Maximum voltage (V)	48			
Power consumption (mW/Hz)	5			
Mechanical size L x H x D (mm) with guides and encoder	23.4 x 19.6 x 10.35			
Mechanical size L x H x D (mm) without guides and encoder	17 x 19.6 x 7			
Weight (g)	16			
Operating temperature (°C)	-20 to +70			
• .	Motor: Hirose DF52-5S-0.8H			
Connector	Encoder: Hirose DF52-6S-0.8H			
Material in motor housing	Stainless steel			

Standard


Stroke range

Stroke (mm) with one adapter	Drive rod length (mm)
0-3.1	30 (not available with encoder)
0-13.1	40
0-23.1	50
0-33.1	60
0-74.1	100.8


Motor speed at 20°C, no load

Waveform	Max freq. (Hz)	Speed range (mm/s)	
Delta	2000	0–15	
Rhomb	3000	0-24	

Connection

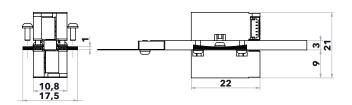
Motor performance

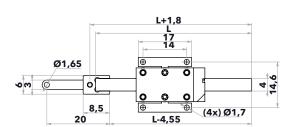
RHOMB

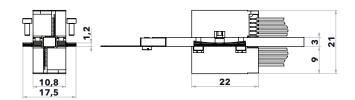
• • • • DELTA

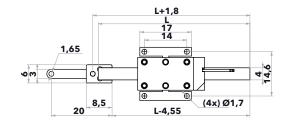
Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). The full step length is the average distance the drive rod moves when the legs take one full step (i.e. for one waveform cycle).

Note: A standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.

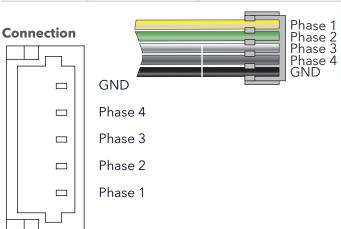



Technical specification LT20					
Туре	Standard (A) Non-magnetic (C) Non-magnetic vacuum (D)				
Stroke (mm) For more information, see table on opposite page.	0-74.5				
Speed range (mm/s) @ Rhomb, no load, 20°C		0-24			
Step length, full step (μm) @ Delta, no load, 20°C		4.5			
Motor resolution, microstep (nm) 14 bits, 8192 microsteps		<1			
Built-in encoder	No				
Encoder resolution (μm)	N/A				
Stall force (N)	20				
Holding force (N)	>20				
Recommended operating range (N)	0-10				
Maximum voltage (V)	48				
Power consumption (mW/Hz)		10			
Operating temperature (°C)		-20 to +70			
Mechanical size L x H x D (mm) 22 x 21 x 17.5					
Weight (g)	29				
Vacuum (torr)	N/A N/A 10 ⁻⁷		10 ⁻⁷		
Connector	2 x JST BM05B-SRSS-TB	2 x JST BM05B-SRSS-TB	Soldered cable w. 2 x JST 05SR-3S		
Material in motor housing	Stainless steel Non-magnetic Non-magnetic				

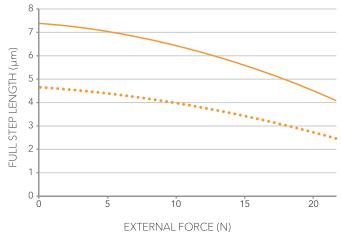



LT2020A - Standard / C - Non-magnetic

LT2020D - Non-magnetic vacuum



Stroke range


Stroke (mm) with one adapter	Drive rod length (mm)
0-3.5	30
0-13.5	40
0-23.5	50
0-33.5	60
0-74.5	100.8

Motor speed at 20°C, no load

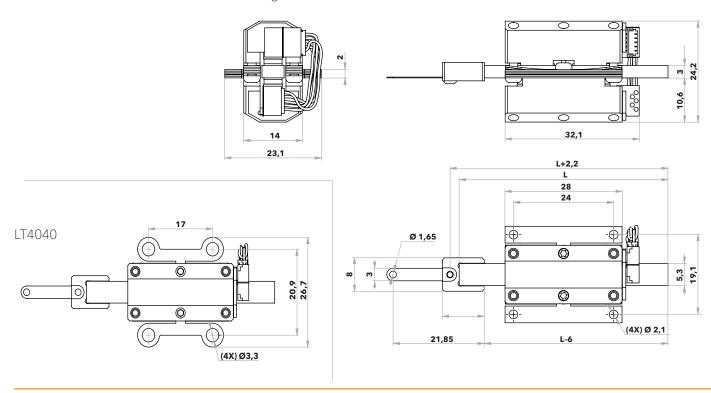
Waveform	Max freq. (Hz)	Speed range (mm/s)
Delta	3000	0–15
Rhomb	3000	0-24

Motor performance

RHOMB

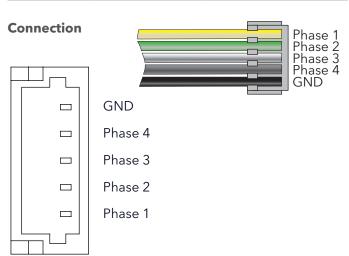
• • • • DELTA

Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). The full step length is the average distance the drive rod moves when the legs take one full step (i.e. for one waveform cycle).

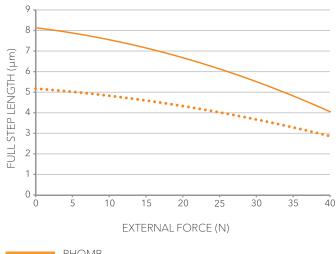

Note: A standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.

Technical specification LT40				
Туре	Standard (A)	Non-magnetic (C)	Non-magnetic vacuum (D)	
Stroke (mm) For more information, see table on opposite page.		0-67		
Speed range (mm/s) @ Rhomb, no load, 20°C		0-12		
Step length, full step (μm) @ Delta, no load, 20°C		5		
Motor resolution, microstep (nm) 14 bits, 8192 microsteps		<1		
Built-in encoder		No		
Encoder resolution (μm)		N/A		
Stall force (N)	40			
Holding force (N)	>40			
Recommended operating range (N)	0-20			
Maximum voltage (V)		48		
Power consumption (mW/Hz)		20		
Operating temperature (°C)		-20 to +70		
Mechanical size L x H x D (mm)	32.1 x 24.2 x 23.1 (26.7 for LT4040)			
Weight (g)	61			
Vacuum (torr)	N/A N/A 10 ⁻⁷		10 ⁻⁷	
Connector	JST BM05B-SRSS-TB	JST BM05B-SRSS-TB	Soldered cable w. 2 x JST 05SR-3S	
Material in motor housing	Stainless steel Non-magnetic Non-magnetic			

LT4050A / LT4050C - Standard and non-magnetic



Stroke range


Stroke (mm) with one adapter	Drive rod length (mm)
0-6	40
0–16	50
0-26	60
0-67	100.8

Motor speed at 20°C, no load

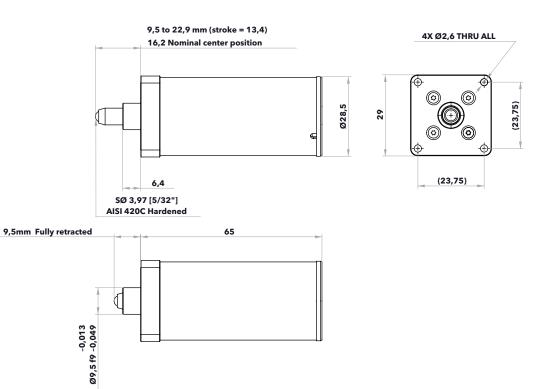
Waveform	Max freq. (Hz)	Speed range (mm/s)
Delta	1500	0–8
Rhomb	1300	0-12

Motor performance

RHOMB

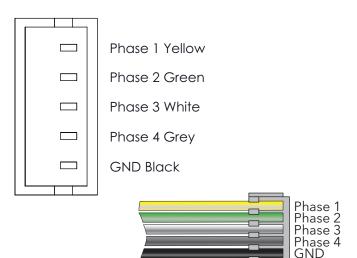
• • • • DELTA

Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). The full step length is the average distance the drive rod moves when the legs take one full step (i.e. for one waveform cycle).

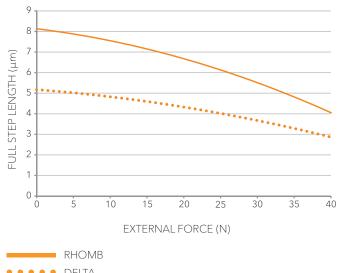

Note: A standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.

Technical specification LTC40		
Туре	Standard (A)	
Stroke (mm) For more information, see table on opposite page.	0-13	
Speed range (mm/s) @ Rhomb, no load, 20°C	0-12	
Step length, full step (μm) @ Delta, no load, 20°C	5	
Motor resolution, microstep (nm) 14 bits, 8192 microsteps, 20°C	<1	
Built-in encoder	No	
Encoder resolution (µm)	N/A	
Stall force (N)	40	
Holding force (N)	>40	
Recommended operating range (N)	0-20	
Maximum voltage (V)	48	
Power consumption (mW/Hz)	20	
Operating temperature (°C)	-20 to +70	
Mechanical size L x H x D (mm)	65 x 29 x 29	
Weight (g)	175	
Vacuum (torr)	N/A	
Connector	Cable w. JST 05SR-3S or JST-SHR-05V-S	
Material in motor housing	Stainless steel	

LTC40


Stroke range

Stroke (mm)	Drive rod length
0-13	Fixed


Motor speed at 20°C, no load

Waveform	Max freq. (Hz)	Speed range (mm/s)
Delta	1500	0–8
Rhomb	1500	0-12

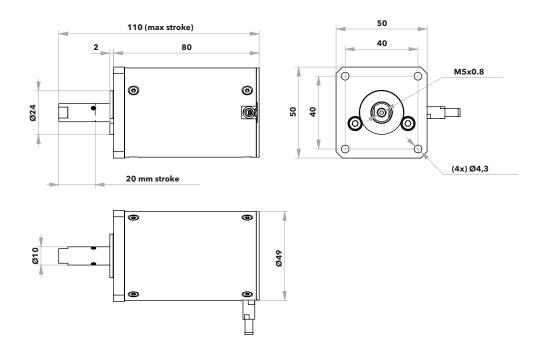
Connection

Motor performance

• • • • DELTA

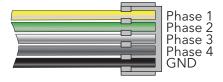
Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). The full step length is the average distance the drive rod moves when the legs take one full step (i.e. for one waveform cycle).

Note: A standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.

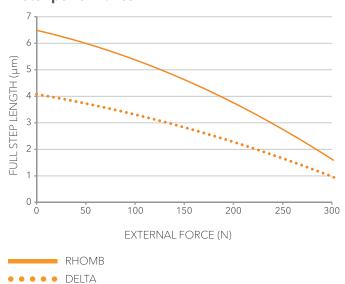

LTC300

Technical specification LTC300	
Туре	Vacuum (B)
Stroke (mm) For more information, see table on opposite page.	0-20
Speed range (mm/s) @ Rhomb, no load, 20°C	0-0.3
Step length, full step (μm) @ Delta, no load, 20°C	4
Motor resolution, microstep (nm) 14 bits, 8192 microsteps	<1
Built-in encoder	No
Encoder resolution (μm)	N/A
Stall force (N)	300
Holding force (N)	>300
Recommended operating range (N)	0-150
Maximum voltage (V)	48
Power consumption (mW/Hz)	200
Mechanical size L x H x D (mm)	80 x 50 x 50
Weight (g)	955
Operating temperature (°C)	+10 to +70
Vacuum (torr)	10 ⁻⁷
Connector	Cable w. JST 05SR-3S
Material in motor housing	Stainless steel

LTC300 - Vacuum


Stroke range

Stroke (mm)	Drive rod length
0–20	Fixed


Motor speed at 20°C, no load

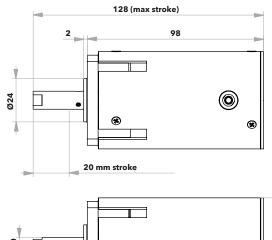
Waveform	Max freq. (Hz)	Speed range (mm/s)
Delta	FO	0-0.2
Rhomb	30	0-0.3

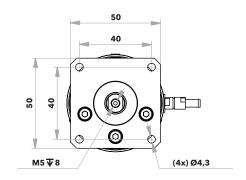
Connection

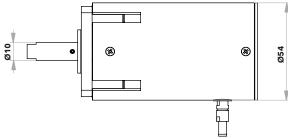
Motor performance

Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). The full step length is the average distance the drive rod moves when the legs take one full step (i.e. for one waveform cycle).

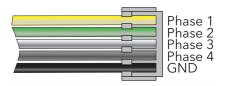
Note: A standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.


LTC450

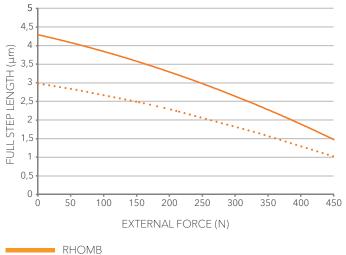



Technical specification LTC450	
Туре	Vacuum (B)
Stroke (mm) For more information, see table on opposite page.	0–20
Speed range (mm/s) @ Rhomb, no load, 20°C	0-0.2
Step length, full step (μm) @ Delta, no load, 20°C	4
Motor resolution, microstep (nm) 14 bits, 8192 microsteps	<1
Built-in encoder	No
Encoder resolution (μm)	N/A
Stall force (N)	450
Holding force (N)	>450
Recommended operating range (N)	0-225
Maximum voltage (V)	48
Power consumption (mW/Hz)	300
Mechanical size L x H x D (mm)	98 x 50 x 50
Weight (g)	1060
Operating temperature (°C)	+10 to +70
Vacuum (torr)	10 ⁻⁷
Connector	Cable w. JST 05SR-3S
Material in motor housing	Stainless steel

LTC450 - Vacuum


Stroke range

Stroke (mm)	Drive rod length
0–20	Fixed


Motor speed at 20°C, no load

Waveform	Max freq. (Hz)	Speed range (mm/s)
Delta	Γ0	0-0.15
Rhomb	50	0-0.2

Connection

Motor performance

RHOME

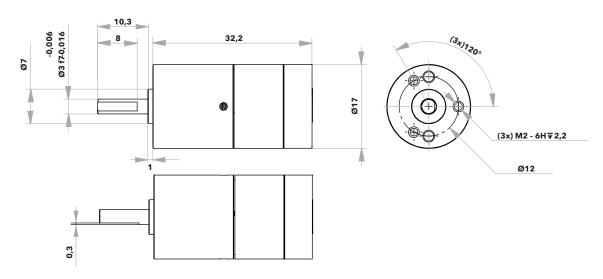
DELTA

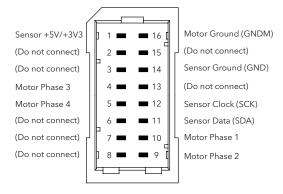
Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). The full step length is the average distance the drive rod moves when the legs take one full step (i.e. for one waveform cycle).

Note: A standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.

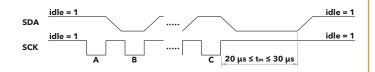
Rotary motors

		Max. torque (mNm)	Recommended working torque (mNm)	(°/c)		Vacuum compatible versions (10 ⁻⁷ Torr)	Non- magnetic versions
Ä	LR17 (A)	30	0-15	0-265 (0-44 rpm)	Yes	No	No
otc	LR23-50 (C/D)	50	0-25	0-160 (0-27 rpm)	Optional (C)	Yes	Yes
Σ	LR23-80 (A)	80	0-40	0-160 (0-27 rpm)	Optional	No	No


		Description
	Α	Standard
ype	С	Non-magnetic
F	D	Non-magnetic vacuum, soldered cables


Technical specification LR17				
Туре	Standard (A)			
Diameter (mm)	17			
Angular range (°)	360			
Speed range (°/s) @ Rhomb, no load, 20°C	0-265 (0-44 rpm)			
Step angle, full step (μrad) @ Delta, no load, 20°C	1000			
Motor resolution, microstep (μrad) 14 bits, 8192 microsteps	<0.1			
Built-in encoder	Yes			
Encoder type	Magnetic, absolute			
Encoder accuracy (mrad)	2.0			
Encoder resolution (mrad)	0.2			
Stall torque (mNm)	30			
Holding Torque (mNm)	>30			
Recommended operating range (mNm)	0-15			
Maximum voltage (V)	48			
Power consumption (mW/Hz)	3.5			
Shaft load, max. (N) radial, 6.5 mm from mounting face	1			
Shaft load, max. (N) axial	2			
Shaft press fit force, max. (N)	5			
Weight (g)	30			
Operating temperature (°C)	-20 to +70			
Connector	CviLux Cl11116M-2VD0			
Material in motor housing	Aluminium, stainless steel			

LR17 - Standard


Connection

Encoder information

The LR17 has an integrated magnetic absolute encoder. It gives 15-bit SSI data. SCK (Sensor Clock) and SDA (Sensor Data) are normally at high level (idle). When receiving a clock pulse from the controller, the LR17 will respond with position data. The SCK frequency should be 70-180 kHz. Data should be read shortly before the positive flank. The time-out between positive flanks is 20-30 μs . The output data is 15 bits (msb first), followed by a stop bit. If SCK continues beyond the stop bit, there will be a second stop bit followed by repeated 15-bit data and a stop bit. A minimum of 120 μs is needed after position readout to make sure that position data is refreshed. Reading position every 0.5 ms is the maximum recommended rate for continuous operation.

- a. 1st clock pulse, SDA stays idle until positive flank.
- b. 2nd clock pulse, SDA output is bit1 (msb).
- c. 16th clock pulse, SDA output is bit15 (Isb).

Motor performance

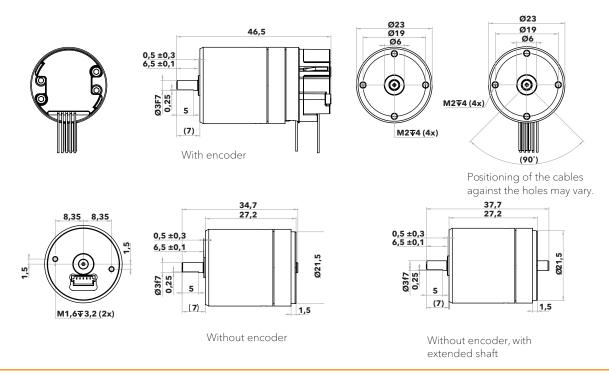
RHOMB

• • • • DELTA

Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). The full step angle is the average distance the drive disc rotates when the legs take one full step (i.e. for one waveform cycle).

Note: A standard deviation σ of 0.1 mrad should be taken into account. Typical values are given for 20°C.

Motor speed at 20°C, no load

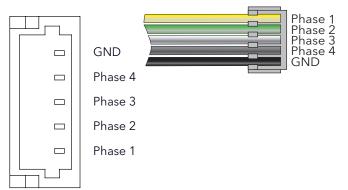

Waveform	Max freq. (Hz)	Speed range	
Delta	2000	0-28 rpm (0-170°/s)	
Rhomb	3000	0-44 rpm (0-265°/s)	

Technical specification LR23-50					
Туре	Non- magnetic (C)	Non- magnetic (C), extended shaft	Non- magnetic (C), encoder	Non- magnetic vacuum (D)	Non- magnetic vacuum (D), ext. shaft
Diameter (mm)			23		
Angular range (°)			360		
Speed range (°/s) @ Rhomb, no load, 20°C			0-160 (0-27 rpm)		
Step angle, full step (µrad) @ Delta, no load, 20°C			550		
Motor resolution, microstep (μrad) 14 bits, 8192 microsteps			<0.1		
Built-in encoder	No	No	Yes	No	No
Encoder type	N/A	N/A	Optical	N/A	N/A
Encoder accuracy (mrad)	N/A	N/A	TBA	N/A	N/A
Encoder resolution (mrad)	N/A	N/A	0.4	N/A	N/A
Stall torque (mNm)	50				
Holding Torque (mNm)			>50		
Recommended operating range (mNm)	0-25				
Maximum voltage (V)	48				
Power consumption (mW/Hz)	7				
Shaft load, max. (N)	TBA				
Shaft load, max. (N) axial			TBA		
Shaft press fit force, max. (N)			TBA		
Weight (g)	75	75	80	75	75
Operating temperature (°C)			-20 to +70		
Connector	JST BM05B- SRSS-TB	JST BM05B- SRSS-TB	Cable attached, driver- dependent	Soldered cable w. JST 05SR-3S	Soldered cable w. JST 05SR-3S
Material in motor housing			Non-magnetic		

LR23-50

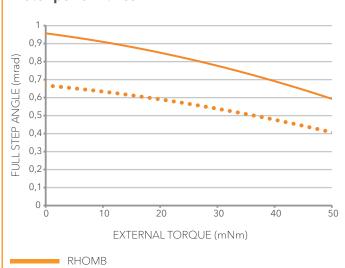
LR23-50 mNm product portfolio

LR23-50 will come in 3 physically different versions:


- with encoder
- without encoder
- without encoder and with extended shaft.

The LR23-50 replaces the previous model LR50.

Motor speed at 20°C, no load

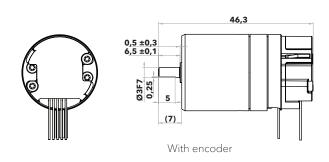

1	Waveform	Max freq. (Hz)	Speed range	
	Delta	3000	0-19 rpm (0-114°/s)	
F	Rhomb	3000	0-27 rpm (0-160°/s)	

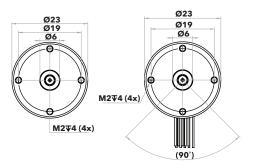
Connection

Motor performance

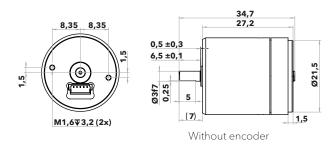
• • • • DELTA

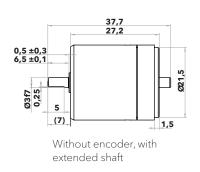
Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). The full step angle is the average distance the drive disc rotates when the legs take one full step (i.e. for one waveform cycle).


Note: A standard deviation σ of 0.1 mrad should be taken into account. Typical values are given for 20°C.



Technical specification LR23-80					
Туре	Standard (A)	Standard (A), extended shaft	Standard (A), encoder		
Diameter (mm)		23			
Angular range (°)		360			
Speed range (°/s) @ Rhomb, no load, 20°C		0-160 (0-27 rpm)			
Step angle, full step (μrad) @ Delta, no load, 20°C		550			
Motor resolution, microstep (μrad) 14 bits, 8192 microsteps		<0.1			
Built-in encoder	No	No	Yes		
Encoder type	N/A	N/A	TBA		
Encoder accuracy (mrad)	N/A	N/A	TBA		
Encoder resolution (mrad)	N/A	N/A	TBA		
Stall torque (mNm)	80				
Holding Torque (mNm)	>80				
Recommended operating range (mNm)	0-40				
Maximum voltage (V)		48			
Power consumption (mW/Hz)	7				
Shaft load, max. (N)	TBA				
Shaft load, max. (N) axial	TBA				
Shaft press fit force, max. (N)	TBA				
Weight (g)	75	75	80		
Operating temperature (°C)		-20 to +70			
Connector	JST BM05B-SRSS-TB	JST BM05B-SRSS-TB	Cable attached, driver- dependent		
Material in motor housing		Stainless steel			



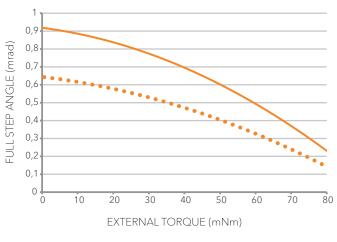

LR23-80

Positioning of the cables against the holes may vary.

LR23-80 mNm product portfolio

LR23-80 will come in 3 physically different versions:

- with encoder
- without encoder
- without encoder and with extended shaft.


The 80 mNm version is made in stainless steel.

The LR23-80 replaces the previous model LR80.

Motor speed at 20°C, no load

Waveform	Max freq. (Hz)	Speed range
Delta	2000	0-19 rpm (0-114°/s)
Rhomb	3000	0-27 rpm (0-160°/s)

Motor performance

RHOMB

Output

Delta

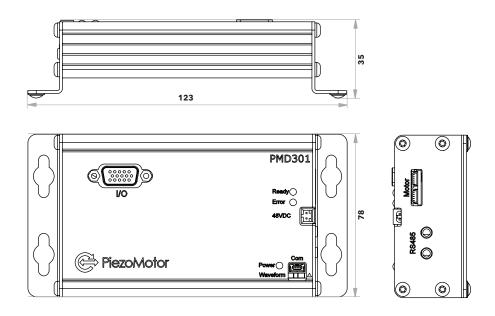
Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). The full step angle is the average distance the drive disc rotates when the legs take one full step (i.e. for one waveform cycle).

Note: A standard deviation σ of 0.1 mrad should be taken into account. Typical values are given for 20°C.

Controllers

PiezoMotor offers different controllers to customers, and a license agreement for customers who want to incorporate the electronics into their own system. The controller range includes a fully enclosed standalone controller, a smaller controller board and a more complex motion controller. All controllers can function in both open and closed loop. With the motion controller, you can set not only speed and position but also time from A to B.

For detailed information for each controller, see separate datasheet. Note that the speed capacity for each combination of controller and motor differs, so make sure to check the performance matrix below.


Performance matrix

				Conti	roller	oller	
\		PMD301		PMD401			
			Delta	Rhomb	Delta	Rhomb	
	LL06	Hz	2500		1500		
	LLUO	(mm/s)	12.5	20	7.5	12	
	LT20	Hz	25	00	7.	50	
	LIZU	(mm/s)	12.5	20	3.8	6	
	LT40	Hz	15	00	350		
	L140	(mm/s)	8	12	2	3	
	LTC40	Hz	1500		350		
Motor		(mm/s)	8	12	2	3	
Š	LTC300	Hz	50		N/A		
	LICSUU	(mm/s)	0.2	0.3	IV/A		
	LTC450	Hz	50		N/A		
	LIC430	(mm/s)	0.15	0.2	IV/A		
	LR17	Hz	2500		1000		
	LK I /	Rpm	24	36	10	15	
	LR23	Hz	2500		1000		
	LRZS	Rpm	24	36	10	15	

Technical specification PMD301					
Туре	Value	Note			
Number of axes	1				
Multi-axis support	Yes	Units can be RS485-chained for multi-axis			
True speed control	No	Only stepping rate controlled			
Resolution	8192 microsteps	Each full step of about 5 μm is divided into 8192 steps			
Maximum stepping rate (Full step frequency - Hz)	2500	Depends on motor			
	Quadrature	ABZ differential, 20 MHz counting			
Cumparted angedors	SSI	8-30 bits, 750 or 130 kbps			
Supported encoders	BiSS	18/26/32 bits, 750 kbps			
	Analog	Analog ±10 V (12 bits)			
Host communication	Two-wire RS485	Commands are sent in ASCII format, 115.2 kbp			
HOSE COMMUNICATION	USB (virtual COM port)	(n81)			
Servo interface	SPI	16 bits (signed), max 20 Mbps			
Servo internace	Analog	Analog interface ±10 V (12 bits, 5 kHz)			
General I/O	4 in	Depending on encoder type and use of limit			
General I/O	2 out	switches			
Stacking connector	N/A				
Motor connector	5-pole, JST SM05B-SRSS-TB	Two connectors, parallel connection			
Encoder/servo connector	15-pin HD female D-sub	Input for sensors or motion controller			
Limit switch	Yes	Input for external limit switches			
Communication connector	3.5 mm audio jack x 2	RS485, daisy chain			
Communication connector	USB mini type B	Input for USB virtual COM port			
Power connector	2-pole header, 2.54 mm, Molex 70543-0001	Input for 48 V supply			
Power supply	48 V DC, 20 W	48 V DC ±5%			
Dimensions (mm)	123 x 78 x 35				

Product description

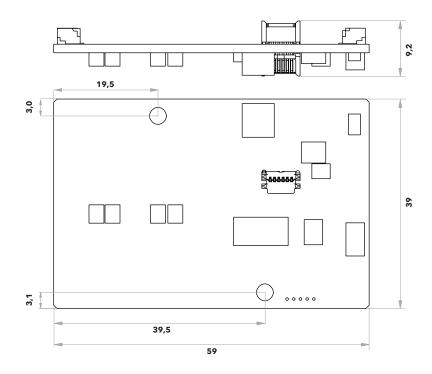
The PMD301 is a 1-axis controller for use with Piezo LEGS® motors from PiezoMotor. Units can be chained to form multi-axis systems.

It provides sub-nanometer resolution and speed in the mm/s range. PMD301 is the ideal choice for system designs where one or several Piezo LEGS® motors are used.

Host communication is either via a 2-wire RS485 or USB virtual COM port through ASCII commands. A 15-pole D-Sub port can be configured for general I/O, sensor input or as a motion controller interface. An external motion controller may control the speed via SPI or analog voltage interface.

Features

- Sub-nanometer resolution
- Closed loop control
- Open loop mode
- Chained RS485 for multi-axis
- Closed loop controller taking commands from host via RS485 or USB
- Slave amplifier to external motion controller analog or SPI interface
- Chain units to form multi-axis system
- General-purpose inputs/outputs maximum 4 in and 2 out



Technical specification PMD401					
Туре	Value	Note			
Number of axes	1				
Multi-axis support	Yes	Units can be RS485-chained for multi-axis			
True speed control	No	Only stepping rate controlled			
Resolution	8192 microsteps	Each full step of about 5 µm is divided into 8192 steps			
Maximum stepping rate (Full step frequency - Hz)	1500	Depends on motor			
	Quadrature	ABZ, 20 MHz counting			
Supported encoders	SSI	8-30 bits, 330 or 130 kbps			
	BiSS	18/26/32 bits, 330 kbps			
Host communication	Two-wire RS485	Commands are sent in ASCII format, 115.2 kbps (n81)			
Servo interface	SPI	16 bits (signed), max 15 Mbps			
General I/O	4 in	Depending on encoder type and use of limit			
General I/O	3 out	switches			
Stacking connector	6-pole, ERNI MicroStac 114711	GND, 48 V, RS485			
Motor connector	5-pole, JST SM05B-SRSS-TB	Two connectors, parallel connection			
Encoder/servo connector	6-pole, JST SM06B-SRSS-TB	Input for sensors or SPI servo interface			
Limit switch	Yes	Input for external limit switches			
Communication connector	3-pole, JST SM03B-SRSS-TB	Input for RS485, or use stacking connector			
Power connector	2-pole, JST SM02B-SRSS-TB	Input for 48 V supply, or use stacking connector			
Power supply	48 V DC, 5 W	48 V DC ±5%			
Dimensions (mm)	59 x 39 x 9.2				

a. Power and communication can be provided through either a stacking connector or through power/communication connectors.
 Note: All specifications are subject to change without notice. For more information, see www.piezomotor.com.

Main dimensions

Note: The connector board used for stacking has the dimensions $59 \times 62,6 \times 18,5$ mm (the same with one attached PMD401 controller card).

Product description

The PMD401 is a fully featured miniature controller for open loop and closed loop operation that can be easily stacked to form a multi-axis controller system.

It can be connected to the customer's mainboard for integration in OEM applications. Host communication is done via 2-wire RS485 through ASCII commands. The PMD401 can also be used as a servo amplifier where the external controller regulates the speed via an SPI interface.

A breakout board with terminal blocks for easy access to power and communication is offered optionally for customers who want to get application development started straight away. It provides sub-nanometer resolution and speed in the mm/s range.

Features

- Sub-nanometer resolution
- Closed loop control
- Open loop mode
- Stackable boards for multi-axis
- Small form factor
- Slave amplifier to external motion controller via SPI interface (servo mode)
- General-purpose inputs/outputs maximum 4 in and 3 out
- General-purpose inputs/outputs maximum 4 in and 3 out

Accessories

Accessories

Cable matrix

		Controller			
		PMD301		PMD401	
		Motor cable	Encoder cable	Motor cable	Encoder cable
	LL06	CK6292	CK6295	CK6292	CK6293
	LT20 (A/C)	CK6272, CK6274	N/A	CK6272, CK6274	N/A
	LT20 (D)	Cable attached	N/A	Cable attached	N/A
	LT40 (A/C)	CK6261	N/A	CK6261	N/A
	LT40 (D)	Cable attached	N/A	Cable attached	N/A
Motor	LTC40	Cable attached	N/A	Cable attached	N/A
	LTC300	Cable attached	N/A	N/A	N/A
	LTC450	Cable attached	N/A	N/A	N/A
	LR17 (A)	CK6256		CK6254	
	LR23 (A/C)	CK6261	N/A	CK6261	N/A
	LR23 (A/C) encoder	Cable attached		Cable attached	
	LR23 (D)	Cable attached	N/A	Cable attached	N/A

Cables		
Art. no	Description	
CK6261-05/15	Motor cable, black jacket, JST end	
CK6272-05/15 Motor cables, black jacket		
CK6274-15	Motor cable, Y-cable for LT20	
CK6292-05	Motor cable, black jacket, JST end	
CK6293-05	Encoder cable, black jacket, JST end	
CK6295-05	Encoder cable, black jacket, D15HD end	

Note: The ending of the acticle number of the cables specifies the length, 0.5 or 1.5 m.

Note: All specifications are subject to change without notice. For more information, see www.piezomotor.com.

Starter kit

Starter kit

PiezoMotor Starter kit

With the Starter kit you can easily get started with Piezo LEGS®. With the free PiezoMotor DriveLab application, you can run the motor in closed loop and with controlled position from a built-in encoder.

The Starter kit is delivered with a PMD401 controller and a linear or rotary motor (LL06, LT20, LT40, LR17 or LR23). It's a fully featured miniature connector board for open loop and closed loop operation that can be easily stacked to form a multi-axis controller system. It can be connected to the customer's mainboard for integration in OEM applications. The PMD401 provides a resolution of up to 8192 microsteps, which means a positioning resolution in the sub-nanometer range. Host communication is done via 2-wire RS485 through ASCII commands.

The Starter kit is delivered with power supply for all regions and a USB (RS85) connection to a Windows computer running DriveLab. Download Piezo DriveLab from the PiezoMotor official website.

Note that each motor will have a specific maximum speed and step length, depending on the controller.

Content	Art. no
PMD401 controller	PMD401-01B
Connector board	CB-PMD401
Power supply 48 V (with 4 regional adapters)	105787-HK-ALL
USB-to-RS485 converter	107401

Note: Make sure to order a suitable motor and matching cables for PMD401.

PiezoMotor DriveLab

PiezoMotor DriveLab is a LabVIEW application designed to help you get started with our Piezo LEGS® motors. It is easy to get started with this software.

DriveLab lets you:

- Run the motor in jog mode or closed loop mode.
- Read out the position from the encoder and set encoder limits.
- Run the motor in various speeds and change the waveform via the controller to optimize speed or precision.
- Import and export scripts from the software.

Glossary

Accuracy

The closeness of a measured value to its true value. An example would be how close an arrow gets to the bullseye center.

Full step

Sometimes also referred to as waveform step. The step taken for one full waveform period. The step size depends on the load and the temperature. A typical load dependence curve is given for each motor.

Holding force / Holding torque

The force / torque that the motor can hold without slippage.

Microstep

An incremental step within the full wfm-step. The size of the microstep will give the resolution of the motor. For a linear motor, the microstep can be on a subnanometer scale.

Precision

The closeness of two or more measurement values to each other. Also known as repeatability.

Recommended operating range

The range of external load recommended for best microstepping performance and life time. The motor can handle higher loads, but the microstep linearity is impaired.

Resolution

The piezo actuator legs are analog components which bend to move the drive rod or to rotate the drive disc. The resolution depends on the number of microsteps per waveform cycle.

Self-locking

Full holding force at power off/power loss.

Stall force / Stall torque

The load at which the motor no loner gives linear motion or rotates.

Step angle

Rotary motion, angular displacement for full step in a load dependence curve. In the technical specification tables, the value is also given for a single microstep.

Step length

Linear travel specified for full steps in a load dependence curve. In the technical specification tables, the value is also given for a single microstep.

Waveform

The shape and form of the electrical signal which controls the Piezo LEGS®. Waveform Rhomb and Delta are commonly used, and will give different behavior in terms of speed, microstepping performance etc.

https://piezomotor.com/

https://www.linkedin.com/company/acuvi/

https://www.instagram.com/acuvigroup/

https://www.youtube.com/@acuvigroup

https://twitter.com/acuvicompany

PiezoMotor is part of the Acuvi Group

